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Three problems related to the spherical quantum billiard inRn are considered. In the
first, a compact form of the hyperspherical equations leads to their complex contracted
representation. Employing these contracted equations, a proof is given of Courant’s
nodal-symmetry intersection theorem for “diagonal eigenstates” of “spherical-like”
quantum billiards inRn. The second topic addresses the “first-excited-state theorem”
for the spherical quantum billiard inRn. Wavefunctions for this system are given by
the product form, (1/ρq)Zq+`(ρ)Y(n)

` , whereρ is dimensionless displacement,` is
angular-momentum number,q is an integer function of dimension,Z(ρ) is either a
spherical Bessel function (n odd) or a Bessel function of the first kind (n even) andθ
represents (n− 1) independent angular components. Generalized spherical harmonics
are writtenY(n)

` (θ ). It is found that the first excited state (i.e., the second eigenstate of
the Laplacian) for the spherical quantum billiard inRn is n-fold degenerate and a first
excited state for this quantum billiard exists which contains a nodal bisecting hyper-
surface of mirror symmetry. These findings establish the first-excited-state theorem for
the spherical quantum billiard inRn. In a third study, an expression is derived for the
dimension of thè th irreducible representation (“irrep”) of the rotation groupO(n) in
Rn by enumerating independent degenerate product eigenstates of the Laplacian.

KEY WORDS: Hyperspherical equations; complex representation; first exited-state
theorem; spherical quantum billiard; irreducible representations.

1. INTRODUCTION

Many components of the spherical quantum billiard inRn (also called the
“Infinite Hyperspherical Well”) have been examined. Application to physics has
been examined mainly with respect to many-body theory (Avery, 1989; Ballot and
Navarro, 1975; Clark and Green, 1980; Cooper and Kouri, 1972; de la Ripella,
1993; de la Ripelle, 1983; Ermolaev and Sochilin, 1964; Fung, 1977; Knitk, 1974;
Smith, 1960). The present work addresses three related topics. In the first of these,
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a contracted form of the hyperspherical equations is presented that gives rise to a
complex representation of these equations. These relations yield necessary con-
ditions for Courant’s noda-intersection symmetry theorem (Courant and Hilbert,
1953) inRn. The second topic addresses extension of the first-excited theorem
(Allessandrini, 1994; Amaret al., 1991; Jerison, 1991; Letz, 1975; Liboff,
1994a,b,c, 2001; Lin, 1987; Melas, 1992; Sommerfeld, 1958) for regular con-
vex polyhedra quantum billiards inRn to the spherical quantum billiard inRn.
This theorem states that for any regular convex polyhedron quantum billiard in
Rn, a first excited state (i.e., second eigenstates of the Laplacian) exists whose
nodal surface is a bisecting surface of mirror symmetry and that the degeneracy of
this state is the dimension of the billiard.

Wavefunctions in hyperspherical coordinates are given by products of radial
functions and generalized spherical harmonics,Y(n)

` (θ ). Radial functions are solu-
tions of a generalized radial equation and are of the form, (1/ρq)Zq+`(ρ), where
q is an integer function of dimension,n, angular-momentum number is`, andρ
is dimensionless displacement. For oddn, Z(ρ) is a spherical Bessel function and
for n even,Z(ρ) is a Bessel function of the first kind. The odd solution reduces to
standard form inR3. The corresponding radial equation generates all order spher-
ical Bessel functions and Bessel functions of the first kind. It is found that the first
excited state for the spherical quantum billiard inRn is n-fold degenerate and that
a first excited state exists for this quantum billiard that contains a nodal bisecting
surface of mirror symmetry. These results are in accord with the first-excited-
state theorem stated above. In a closely related problem, a sequential inequality
of Bessel-function zeros is presented which implies that a second excited state
(third eigenstate of the Laplacian) of the spherical quantum billiard inRn exists
whose nodal surfaces are likewise composed of hyperplanes of mirror symmetry.
Degeneracy of this second eigenstate is (n− 1)(n+ 2)/2. It is shown thatY(n)

` (θ )
is equal to a sum of products, each of degree`, of hyperspherical coordinates.
Lastly, an expression is derived for the dimension of the`th irreducible repre-
sentation (“irrep”) of the rotation groupO(n) in Rn. [Here we are discussing the
O(n) group excluding inversions, usually writtenO(n)+.] Basis functions for the
`th irrep of O(n) are given by the eigenfunctions for the hyperspherical quantum
billiard in Rn.

2. SPHERCAL QUANTUM BILLIARD IN RRn

We consider the spherical quantum billiard inRn, bounded by the spherical
surfaceSn−1. Previous studies ofSn have addressed graphics (Kocak and Laidlaw,
1987), the classical mechanics of two uncoupled harmonic oscillators (Kocaket al.,
1988), two-body correlations and scattering amplitudes, respectively, in many-
dimensional space (de la Ripella, 1993; de la Ripelle, 1983), and many-electron
atoms (Avery, 1989; Knitk, 1974).
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2.1. Hyperspherical Equations;S(n,q) Functions

The angular description ofSn−1 is given in terms of hyperspherical coordi-
nates{θi , n ≥ 2}. Equations relating these to cartesian coordinates{xk, (1≤ k ≤
n)} involve the angular forms:

S(n, n− k) ≡ sinθn sinθn−1 · · · sinθn−k

S(n, n) = sinθn; S(n, 0)≡ 1 (1a)

These hyperspherical equations are given by

xn = S(n, 0) cosθn

xn−1 = S(n, n) cosθn−1

xn−2 = S(n, n− 1) cosθn−2

xn−3 = S(n, n− 1) sinθn−2

xn−4 = S(n, n− 2) cosθn−4

xn−5 = S(n, n− 2) sinθn−4 (1b)

xn−6 = S(n, n− 3) cosθn−6

xn−7 = S(n, n− 3) sinθn−6

...

x1 = S(n, 3) sinθ2 = S(n, 2)

Note thatxn, xn−1, andx1 individually maintain their forms with change inn. In
the preceding, the anglesθi are defined fori ≥ 2.

2.2. Generalized Polar and Azimuthal Angles

To identify polar and azimuthal angles in the transformation equations (1a),
we consider first the angular description onS2, namely (n = 3)

x3 = cosθ3

x2 = sinθ3 cosθ2 (2a)

x1 = sinθ3 sinθ2

These relations identifyθ3 as the “polar” angle andθ2 as the “azimuthal angle.”
The angular description onS3 is given by (n = 4)

x4 = cosθ4

x3 = sinθ4 cosθ3
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x2 = sinθ4 sinθ3 cosθ2 (2b)

x1 = sinθ4 sinθ3 sinθ2

Again,θ4 may be identified as the “polar” angle andθ2, θ3 as azimuthal angles.
Generalizing to the angular description ofSn−1, we see thatθn is the generalized
polar angle andθi , 2≤ i ≤ n− 1 are generalized azimuthal angles.

The transformation (1) satisfies the relation
n∑

i=1

x2
i = 1 (2c)

−1≤ xi ≤ 1 (2d)

The relation (2c) is a result of the orthogonality of the elements{xi } and describes
the unit sphere inRn. With (2c) we write,

n−1∑
i=1

x2
i = 1− x2

n = sin2 θn (2e)

At any value ofxn in the domain (2d), the relation (2e) describes a hypersphere
in Rn−1 of radius, sinθn. The hypersurfacexn = 0 is a bisecting hypersurface of
mirror symmetry ofSn−1.

2.3. Complex Representation

For n even, (1b) comprises a complete set ofn/2 couplets. Accordingly, we
define the complex variable,

zq ≡ xq + i xq−1 (3a)

Thus

zn−2 = S(n, n− 1) exp(i θn−2)

zn−4 = S(n, n− 4) exp(i θn−4)

... (3b)

z4 = S(n, 4) exp(i θ4)

z2 = S(n, 3) exp(i θ2)

In these relations, for oddn, effect the changes:

exp(i θk)→ i exp(−i θk), [2 ≤ k ≤ n− 2] (3c)

and for (n ≥ 3),

(n− 2, n− 4, · · ·)→ (n− 1, n− 3, · · ·)
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The terms,xn, xn−1 may be written in the complex representation

zn = expi9
(3d)

tan9 = tanθn cosθn−1

Incorporatingzn into (3b) gives [n/2, (n+ 1)/2] equations forn (even, odd).
The relations (3) play a role in the development of generalized spherical har-

monics in the expansion (6b) and Courant’s nodal symmetry partitioning theorem
(Section 4). As an example of the mapping (3), consider the casen = 5. The
variablesx5, x4 are given by (1b) andx3, x2, x1 by

x3+ i x2 = z3 = i S(5, 4) exp(−i θ3) = sinθ5 sinθ4(cosθ3+ i sinθ3)

x1 = Rez1 = Re [i S(5, 1) exp(−i θ1)] = sinθ5 sinθ4 sinθ3 sinθ2

2.4. Radial Dependence

We turn next to the radial dependence of solutions of the Helmholtz equation

49 + k29 = 0 (4a)

in a spherical domain bounded bySn−1, on which

9(Sn−1) = 0 (4b)

In (4a),1 represents the Laplacian inRn andk2 represents an eigenenergy. The
Laplacian operator has the spherical-coordinate representation (Taylor, 1986)

1 = Ôr + r−21S (5a)

Ô ≡ −[∂2/∂r 2+ (n− 1)r−1∂/∂r ] (5b)

Where1S represents the Laplacian on the unit spherical surface,Sn−1, andr is
written for the magnitude of the radial vector inRn. In (5b) a sign change was
introduced consistent with a quantum mechanical representation of the kinetic
energy operator (Liboff, 1998). The eigenvalue equation for the Laplacian on the
unit sphere,Sn−1, is given by (Avery, 1989; Gallotet al., 1990)

1SY(n)
` = `(`+ n− 2)Y(n)

` (6a)

whereY(n)
` is the restriction toSn−1 of a homogeneous polynomial of degree` in

Rn−1, and is given by the multinomial expansion

Y(n)
` = A

∑
{qi}

`!

q1!q2! . . .qn!
(x1)q1(x2)q2 · · · (xn)qn (6b)

q1+ q2+ · · · + qn = ` (6c)

qi ≥ 0, ` ≥ 0, n ≥ 2, and are integers
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The summation in (6b) is over all nonnegative integers subject to the conditions
(2c) and (6c). The coefficientA is a normalization constant. The functionY(n)

` is
constant if and only if,̀ = 0. In general,Y(n)

` is equal to a sum of products, each
of degreè , of hyperspherical coordinates. The degeneracy,g(n, `), of a state of
given` in Rn−1 is equal to the number of independent terms in (6b). As shown in
Section 4,g(n, `) is given by

g(n, `) = B′(n, `) = δ(n, `) (7a)

whereB′(n, `) is a displaced binomial coefficient andδ(n, `) represents dependent
product states, for whichδ(n, 2)= 0, for all integern > 2.

Apart from factors ofh2 (Planck’s constant), (6a) is an eigenvalue equation for
the square of generalized angular momentum,L2, in Rn. Thus, with (1S→ L2),
in R3, (6a) returns the well known expression

L2Y(3)
` = h2`(`+ 1)Y(3)

` (7b)

We introduce the product solution to (4a)

9
(n)
` (r, θ ) = w(r )Y(n)

` (8a)

whereθ represents (n− 1) independent variables. TheY(n)
` functions are labeled

generalized spherical harmonics. Substituting (8a) into (4a) gives

Ôr w

w
− `(`+ n− 2)

r 2
+ k2 = 0 (8b)

or, more explicitly

r 2w′′ + (n− 1)rw ′ + [k2r 2− `(`+ n− 2)]w = 0 (8c)

where primes denote differentiation with respect tor . Introducingρ ≡ kr gives
the “generalized radial equation”

ρ2w′′ + (2+ b)ρw′ + [k2ρ2− `(`+ 1− b)]w = 0 (9a)

b ≡ n− 3 (9b)

In R3, b = 0 and (9a) reduces to the well-known Bessel and Neumann functions
(Jackson, 1999). (In this derivation, as in the case for Bessel functions inR3,
one ignores the series that does not satisfy inversion symmetry.) A power series
solution of (9a) that starts asρλ reveals the indicial equation

λ(λ+ b) = `(`+ 1+ b) (10a)

which has the two solutions

λ = ` (10b)

λ = −`− (1+ b) (10c)



P1: IBB

International Journal of Theoretical Physics [ijtp] pp647-ijtp-453629 November 1, 2002 21:1 Style file version May 30th, 2002

Complex Hyperspherical Equations 1963

Theρ` behavior may be identified with spherical Bessel functions and theρ−`−(1+b)

behavior with spherical Neumann functions. To investigate orthogonality of these
functions we revert to (8b) whose differential operator is rendered self-adjoint by
the factorρb. One obtains the following orthogonality relation for the spherical
quantum billiard on the unit sphere inRn.∫ 1

0
dr r 2+bw(k1r )w(k2r ) = 0 (10d)

wherek1 andk2 are respective zeros ofw-functions. It is noted that (10d) reduces
to standard orthogonality conditions for Bessel functions of the first kind inR3. In
the following, based on boundedness of the wavefunction at the origin, Neumann
functions are deleted in solutions. The general solution of (9a) is given by (Kamke,
1967)

w(ρ) = 1

ρQ/2
Zν(ρ) (11a)

Q ≡ 1+ b = n− 2 (11b)

ν2 = 1

4
[Q2+ 4`(`+ Q)] = 1

4
(Q+ 2`)2 (11c)

whereZν(ρ) represents Bessel functions of orderν. Consider first the case that
dimension,n, is even, so thatQ = 2q, whereq ≥ 0, and integer. In this event, the
solution (11a) becomes

w(e)(ρ) = 1

ρq
Jq+`(ρ) (12a)

where we have written

ν(e) = (q + `) (12b)

which is an integer andJa+`(ρ) is a Bessel function of the first kind (Watson,
1966). InR2, Q(n = 2)= 0, andq = 0. In this event,w(e)(ρ) is relevant to the
unit circle quantum billiard (or circular membrane) (Liboff, 1999). For oddn, we
write, Q = 2q + 1, where, again,q ≥ 0, and is integer. There results,

w(o)(ρ) = 1

ρ(2q+11)/2
Zν(o)(ρ) (13a)

where

ν(o) = 1

2
+ (`+ q) ≥ 1

2
(13b)

is a half odd integer andw(o)(ρ) is a spherical Bessel function (Jackson, 1999).
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That is, forn odd (apart from a factor ofπ )

w(o)(ρ) = 1

ρq
jq+`(ρ) (13c)

In R3, Q(n = 3)= 1, andq = 0. In this casew(0)(ρ) reduces to a standard Bessel
function. Note that

q(e) = (n− 2)/2, q(o) = (n− 3)/2, n ≥ 2 (13d)

In this manner we find that solutions to (9a) can be classified according to whether
the dimensionaliltyn is even or odd. Forn even, these solutions are weighted
Bessel functions of the first kind, whereas for oddn they are weighted spherical
Bessel functions. In either case, the order of the Bessel function that enters isν =
q + ` ≥ 0, for n ≥ 2. Eigenfunctions for the spherical quantum billiard problem
in Rn are given by

9
(n)
` (r, θ ) = wq+`(kr)Y(n)

` (θ ) (14)

wherewq+l (kr) is written for either Bessel functions of the first kind (12) forn
even, or spherical Bessel functions (13) forn odd and (q, `) are positive integers.
Eigenenergies are given by (kν, j ) (Smith, 1960) wherekν, j is theJth zero ofwν .
That is,wν(`,n)(kν, j ) = 0, corresponding to Dirichlet boundary conditions on the
unit sphere.

2.5. Angular Dependence

We turn next to the angular component solutionsY(n)
` (θ ) and properties of

the ground and first-excited states of the spherical quantum billiard inRn. With
reference to (6), we note that the eigenstate of lowest angular eigenvalue is

Y(n)
0 (θ ) ≡ Kn = constant (15a)

corresponding to the radial component,Wq(kr). The first-degree harmonic poly-
nomial inRn is given by

Y(n)
1 = A(n)

1 (x1+ x2+ · · · + xn) (15b)

whereA(n)
1 is constant. The preceding polynomial corresponds to the radial com-

ponentwq+1(kr) in (13). The second-degree harmonic polynomial inRn is given
by [see (6b)]

Y(n)
2 = A(n)

2

(
x1x2+ x1x3+ · · · + xn−1xn + x2

1 + · · · x2
n−1

)
(15c)

There are (
n
2

)
+ (n− 1)= (n− 1)(n+ 2)

2
(15d)
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independent terms in the sum (15c). The polynomialY(n)
2 matches with thewq+2(kr)

radial component in (14).
As a specific example of the angular wavefunction,Y(n)

1 , consider the state

Y(n)
1 = A(n)

1 xn = A(n)
1 cosθn (15e)

which vanishes on the bisecting hypersurface ofSn−1, θn = π/2. With this result
and the form (6b) we note that anyY(n)

` function has a component that vanishes on
a bisecting hypersurface ofSn−1.

3. WAVEFUNCTIONS

The ground state of the spherical quantum billiard inRn, for n ≥ 2, is

9
(n)
0 (r, θ ) = Knwq+0(k0,1r ) (16)

with corresponding eigenenergy, (k0,1) (Smith, 1960). The eigenfunction (16) van-
ishes onSn−1 and is otherwise nonnodal in the unit sphere inRn. Note in particular,
that this ground state includes zero value of angular-momentum`-value in allRn.
Recalling that Bessel functions are interlaced and that the first finite zero (Watson,
1966) ofZν(ρ) grows withν, it follows that a first-excited-state for the spherical
quantum billiard inRn is given by

9
(n)
1 (r, θ ) = wq+1(k1,1r )Y(n)

1 (θ ) (17)

with corresponding eigenenergy (k1,1) (Smith, 1960). One component of the pre-
ceding solution includes the factorY1 which, as noted above, vanishes on a bi-
secting hypersurface ofSn−1. Furthermore, as follows from (15d), the state (17) is
n-fold degenerate. The nodal structure of the first excited state (17), as well as the
nonnodal property of the ground state (16) are both in accord with Courant’s nodal
partitioning theorem (Courant and Hilbert, 1953). These properties establish the
first-excited-state theorem for the spherical quantum billiard inRn.

3.1. Second Excited State

We consider the second excited state of the spherical quantum billiard inRn

(i.e., the third eigenstate of the Laplacian). It is noted that zeros of Bessel functions
satisfy the following inequality sequence.

0 < kν,1 < kν+1,1 < kν+2,1 < kν,2 (18)

where, as above,kν,s is thesth zero ofZν . Validity of the first three left inequalities
of (18) is evident. The last inequality on the right of (18) follows from Porter’s
theorem (Watson, 1966) which states that an odd number ofkν+2 zeros exist
between successivekν zeros. With the preceding sequence, it follows that the
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angular component of the second excited state is given by (15c) corresponding to
` = 2. Choosing a particular component of the series (15c) we write

Y(n)
2 (r, θ ) = A(n)

2 cosθn sinθn cosθn−1 (19)

which is zero on the hypersurfaces,θn = π/2, θn−1 = π andθn = π, θn−1 = π/2,
corresponding to the mutually perpendicular hyperplanes,xn = 0, xn−1 = 0. These
hyperplanes partition the unit sphere inRn into four subdomains of equal measure.
Again, this result is consistent with Courant’s nodal partitioning theorem (Courant
and Hilbert, 1953). With (19), a second eigenstate of the spherical quantum billiard
in Rn is given by

9
(n)
2 (r, θ ) = wq+2(k2,1r )Y(n)

2 (θ ) (20a)

As follows from (6c), degeneracy of the second excited state of the spherical
quantum billiard inRn is

g(n, 2)= (n+ 2)(n− 1)/2 (20b)

4. NODAL INTERSECTION SYMMETRY THEOREM

A theorem described by Courant (Courant and Hilbert, 1953) states that if a
set of nodals of a solution to the Helmholtz equation in a convex domain inR2, with
a smooth boundary, intersect, then these nodals make an equal-angled array about
the point of intersection. Note that this is the case for the circular harmonics (Liboff,
1994a,b,c), as well as for the eigenfunction (19). With the present formalism, this
theorem may be generalized toRn. Nodal surfaces of a given eigenstate inRn are
obtained by setting the right side of (6b) equal to zero and equating each respective
independent sum of terms to zero. We define a “spherical-like” billiard (Liboff,
2002) inRn as a convex billiard with a smooth boundary whose ratio of minimum-
to-maximum diameters,x, is such that 1> x > 0, 1− x << 1. Consider that
a number of nodal surfaces of a given eigenstate of this billiard intersect at a
point. Mapping this point onto the origin ofRn indicates that the solution in an
infinitesimal neighborhood about this point is given by (14) withY(n)

` given by
(6b). The eigenstates contained in (6b) include a subset of “diagonal” states that
are sums over single-coordinate states of the formxq

ν . Expressing these states in
terms of the complex representation (3b) gives, in accord with (6b),

Y(n)
` (diag) = zq1

2 + zq1
4 + · · · (21a)

To insure independence of the terms in this sum, we introduce the following
procedure: In the first step, the last term in the sequence (21a) is eliminated.
The remaining terms contain allxi exceptxn and xn−1 and are independent. In
the following step, the penultimate term in the sequence (21a) is eliminated. The
remaining terms contain allxi variables exceptxn−3 andxn−4 and are independent.
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In each step of this procedure, the resulting sequence in (21a) contains independent
terms and vanishes providing each individual term in the respective sum vanishes.
Consider, for example,Y(4)

k in the complex representation (3):

Y(4)
k (θ2, θ3, θ4) = (z2)k = (sinθ3 sinθ4)k exp(ikθ2) (21b)

Nodals of both real and imaginary parts of this relation partition the (x3, x4) hy-
perplane into 2k wedges of equal angle, respectively [see (1d)]. Continuing in this
manner we find that nodals of the state (21a) partition all hyperplanes (xq, xq+1)
into 2k wedges of equal angle, respectively. We may conclude that these diagonal
eigenstates of the Helmholtz equation inRn for a spherical-like quantum billiard,
satisfy Courant’s nodal-symmetry partitioning theorem.

5. DIMENSIONS OF IRREPS OF THE SPHERICAL QUANTUM
BILLIARD IN Rn; YOUNG SYMMETRIZERS

The group-theoretic technique to determine the dimensions of irreps ofO(n)
generates an algorithm for these entities. It is based on Young symmetrizes
(Hamermesh, 1962) to a subspace of nonvanishing traceless tensors of non-negative
integer rank for a given value ofn, [derived from the general linear group,GL(n)]
to obtain traceless tensors of a given symmetry type (i.e., symmetric, antisym-
metric and mixed) with respect to tensor-index sequences. Sets of tensors of a
given symmetry comprise a basis of an irrep ofO(n). However, the related al-
gorithm does not generate a closed expression for the dimensions of the irreps
of O(n).

5.1. Degeneracies and Basis Functions

In the present work, an alternative procedure is described to obtain the di-
mensions of the irreps ofO(n), based on the following: If the symmetries of an
Hamiltonian,H , are described by the group,G, then the dimensions of irreps ofG
are equal to the degeneracies of of the eigenstates ofH . The degeneracy,g(n, `), of
the (n, `) eigenstate of the spherical quantum billiard inRn is equal to the number
of independent terms on the right side of (6b) subject to the constraint (6c). Thus,
calculating the degeneracy,g(n, `), of the (n, `) eigenstate is related to the number
of independent ordered sequences in the expression (Riordan, 1958)∑

{qi }
xq1

1 xq2
2 xq3

3 · · · xqn
n (22a)

As each ordered sequence is at the same (n, `) values, degeneracy of this (n, `)
state is equal to the number of partitions of` into n slots with relatedqi -labels,
and is given by the displaced binomial coefficient
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g(n, `) = B′(n, `) ≡ B(n, `)− 1+ 2δ2,n(1− `) (22b)

B(n, `) =
(

n+ `− 1
`

)
(22c)

The kronecker-delta symbol,δ2,n, serves to insure the value,g(2, `) = 2. For the
(n, 2) state, (22b) gives (n > 2)

g(n, 2)=
(

n+ 1
2

)
− 1= (n− 1)(n+ 2)

2
(23a)

in accord with (15d). More generally,g(n, `) may be less than that given by (22b)
due to dependence of product states in (22a). To account for such states, we write

g(n, `) = B′(n, `)− δ(n, `) (23b)

From the known fact thatg(3, `) = 2`+ 1, one finds

δ(3, `) = `2− `− 2

2
(23c)

whereas with (22b) one obtainsδ(n, 2)= 0.
The functiong(n, `) gives the dimensions of irreps of the rotation groupO(n)

in Rn. As the Laplacian inRn is invariant to rotations about the origin, it follows
that eigenfunctions (14) of this operator are a basis of the`th irrep of O(n). We
note that there is a countably infinite number of irreps ofO(n).

6. CONCLUSIONS

A contracted form of the hyperspherical equations was employed in formulat-
ing a complex representation of these hyperspherical equations. With this complex
representation, it was shown that “diagonal” eigenstates of the Helmholtz equation
inRn for a spherical-like convex quantum billiard, satisfy Courant’s nodal symme-
try partitioning theorem. Working in hyperspherical coordinates, it was found that
wavefunctions are given by products of Bessel functions and generalized spheri-
cal harmonics. The Bessel functions are solutions of a generalized radial equation.
Solutions separate according to whether dimension number,n, is even or odd. For
evenn, solutions of the radial equation are weighted Bessel functions of the first
kind and forn odd, are weighted spherical Bessel functions. It was found that the
first excited state for the spherical quantum billiard inRn is n-fold degenerate and
that a first excited state for this quantum billiard exists which contains a nodal
bisecting hypersurface of mirror symmetry. These properties establish the first-
excited-state theorem for this system. A sequential inequality of Bessel-function
zeros was noted to imply that a second excited state exists of the spherical quantum
billiard in Rn whose nodal surface is likewise composed of hyperplanes of mirror
symmetry. It was noted further that the angular harmonic,Y(n)

` (θ ) is equal to a sum
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of products, each of degreè, of hyperspherical coordinates. Explicit forms of
Y(1)
` θ , andY(2)

` θ were given. An expression was obtained for the dimension of the
`th irrep of theO(n) group inRn by counting independent degenerate eigenstates
of the Laplacian. It was noted that basis functions for the`th irrep of theO(n)
group are given by derived9 (n)

` eigenfunctions for the spherical quantum billiard
in Rn.
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